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Perfect Multiple Error-Correcting Arithmetic Codes 

By Daniel M. Gordon* 

Abstract. An arithmetic code is a subgroup of Zr" + l, with the arithmetic distance d(x, y) = 

min. X Y c, r() (mod r' + 1), for Icl < r, n(i) > 0 for 1 < i < t. A perfect e- 
error-correcting code is one from which all x E Zr ? + l are within distance e of exactly one 
codeword. Necessary and sufficient (assuming the Generalized Riemann Hypothesis) condi- 
tions for the existence of infinitely many perfect single error-correcting codes for a given r are 
known. In this paper some conditions for the existence of perfect multiple error-correcting 
codes are given, as well as the results of a computer search for examples. 

1. Introduction. The most general definition of a code is a set X (usually thought 
of as messages), a subset C (codewords) and a distance function (number of errors), 
with C chosen so that the codewords are far apart in the given metric. In the 
Hamming metric, X is the set of all strings of 0's and l's of a given length, and the 
distance is the number of different digits. In this paper, we deal with a different type 
of code: 

Definition. For x E Zm, the ring of integers mod m, the arithmetic weight of x is 
the minimal number of nonzero entries in any representation x = YS Ocir' (mod m), 
with IcI < r for all i. 

Every x has many different representations. One example is the base r representa- 
tion of x, although that is in general not minimal. 

The reason for this definition is that, when doing computer arithmetic in Zm with 
radix r, an error consists of changing a digit, i.e., adding or subtracting a multiple of 
r'. The arithmetic weight gives a lower bound on the number of changed digits in a 
number. 

Definition. For x, y E Zm, the arithmetic distance d(x, y) is the arithmetic weight 
of x -y. 

For the purposes of arithmetic codes, m is always taken to be r " + 1, for several 
reasons. In these cases the arithmetic distance is a sensible measure of the number of 
errors, which is not true in general. Also, arithmetic mod rn + 1 is easy to do on a 
computer (see [4]). Since r n ?+1 (mod i), we need only take n digits in a 
representation. For notational convenience, a representation x Z7-J cr' will be 
written as (cn1, cn-2* ... c1, c0). 

Definition. Let m = rn + 1 = AB, for some A, B E Z+. An arithmetic code is a 
subgroup C = {AN IO < N < B) Of Zm. 
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From this definition, B is the number of codewords in C, which is the ideal 
generated by A. To use this code, a number N is encoded as AN, and an addition 
would be done: AN1 + AN2 = A(N1 + N2) + error. Since A(N1 + N2) is a code- 
word, the result can be decoded if few enough errors have been made, and the sum 
recovered. 

If m = r'. - 1, the code is called cyclic, because any cyclic shift of a codeword is 
also a codeword: If x = (c1, ... ., co) is in a code C, then 

rx (c2,.. ., co, Cn- 1) (modrn - 1) 

is also in the code. If m = r' + 1, the code is called negacyclic, for similar reasons: 

rx (Cn-2, ... , co, -C 1) (mod rn + 1) . 

Definition. An e-error-correcting code (e-code for short) is a code for which every 
element of Z., is distance < e from at most one codeword. Equivalently, any two 
codewords are distance > 2e + 1 apart. A code is called perfect if every element is 
distance < e from exactly one codeword. 

Perfect codes are good in the sense that they have no wasted space (errors which 
cannot be decoded). Also, perfect codes tend to be nice mathematical structures. For 
Hamming codes the existence of perfect codes is more or less solved. For arithmetic 
codes, only the case of single error-correcting codes is well understood. Lenstra, in 
[5], finds necessary and sufficient conditions for an infinite number of perfect 
1-error-correcting codes to exist for a given r and n, assuming the Generalized 
Riemann Hypothesis. 

As an example, take r = 3, n = 3 and m = rn - 1 = 26. Then A = 13 generates 
a perfect 1-error-correcting code with two codewords, 0 and 13. The sphere of radius 
1 around zero has thirteen elements: {. +1, +2? +3 +6? +9 + 18). The other 
thirteen elements of Z26 form a 1-sphere around 13, which has weight 3. 

In this paper we examine the existence of perfect e-error-correcting arithmetic 
codes for e > 1. In Section 2 an explicit version of the sphere-packing condition is 
developed to give a powerful necessary condition on the existence of these codes. A 
table of all cases passing this condition for A < 241 is given. To eliminate most of 
the entries in this table, more necessary conditions are derived in Section 3, using 
some combinatorial arguments and some elementary number theory. 

In Section 4 wegive the only known family of perfect codes, one for each e. Each 
of these codes has only two codewords and is analogous to the repetition codes in 
the Hamming metric (where the two codewords are the vector of all zeros and the 
vector of all ones). Despite a fairly extensive computer search, no other perfect codes 
were found. 

The last part of the paper is devoted to a heuristic argument that other perfect 
multiple error-correcting arithmetic codes, if any exist, are very rare, and would 
involve huge numbers. This argument uses some sieve theory and a reasonable, if 
unprovable, assumption. 

2. The Sphere-Packing Condition. From now on we will only consider perfect 
codes. A starting point for any investigation of perfect codes is the sphere-packing 
condition: Since the space Zm is partitioned into a union of e-spheres, the size of the 
sphere (denoted ISe(r, n)j) must divide the size of the whole space. 
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m = (? of codewords)- ISe(r, n)I = B ISe(r, n)I. But m = AB by the definition 
of the code, so A = ISe(r, n)I. For convenience we will refer to A as the size of any 
e-sphere, not writing out its dependence on e, r and n, and whether m is rn + 1 or 
r-n 1. 

In the case of arithmetic codes, the size of the e-sphere is not obvious. Different 
error patterns give the same result; for instance, 3 = 21 + 20 = 22 - 20. To calculate 
it, the following results from van Lint [6] are needed: 

Definition. The pair (b, c) is admissible if any one of the following hold: 

(2.1a) (i) bc = 0, 
(2.1b) (ii) bc > O and lb + cl < r, 

(2.1c) (iii) bc<O and tbl>lcl. 

Definition. A representation x = L?=Ocir', with ci E Z. Icil < r for all i and 

ci 0 for all large i is called an NAF (nonadjacent form), if for every i > 0 the pair 

(ci+ 1, ci) is admissible. 

THEOREM 1. Every integer x has exactly one NAF. If this is 
00 

x= cri 

i=o 

then its arithmetic weight is 

w(x) ={fili > 0, Ci 0} I. 

Proof. See [6]. van Lint gives an algorithm which turns any representation into an 
NAF of lesser or equal weight. Then he shows that the NAF is unique, completing 
the proof. E 

The reason for the name "nonadjacent form" is that, for r = 2, an admissible pair 
(b, c) must satisfy bc = 0. Thus, in an NAF in radix 2, there are no adjacent nonzero 
digits. 

Definition. A representation 

n-i 

x cir'(modm) 
i=O 

is called a CNAF (cyclic NAF) if (ci 1, ci) is admissible for i = 0, 1,. . ., n - 2, and 

(cO, cn-1) is admissible if m = rn - 1, or (-cO, cn-) is admissible if m = rn + 1. 

THEOREM 2. Every x E Z.. has a unique CNAF, unless (r + 1)x 0 x (mod m). 
In the exceptional cases, x either has two CNAFS (m = rn - 1) or none (m = rn + 1). 

Proof. This theorem was given in [2] and [6] for the m = r " - 1 case without 
proof. We will give the proof for m = rn + 1, which is substantially the same as the 
other case. 

Let 1 < x < rn (the negative of a CNAF is a CNAF, and x- 1 is obvious). The 
CNAF for x is also an NAF for some number congruent to x (mod rn + 1). The 
absolute value of a CNAF is less than re, since each of the ci's are < r, 
and Ein J(r - 1)r' = rn - 1. Thus the CNAF of x is the NAF for x itself or x - 

(r + 1). 
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Let y = r' + 1 - x. Then to determine whether x has a unique CNAF, we must 
determine whether the NAF's for x and y can both be CNAF's or both not be. For 
an NAF to be a CNAF it must have ci = 0 for i > n - 1 and (-c0, c,11) admissible. 
To help with this, we have the following lemma from van Lint [61: 

LEMMA 2.1. If we denote the maximal value of i for which cl # 0 in an NAFfor x by 
i(x) and define i(O):= -1 then 

rk+2 

i(x) < k r xi < + 

From this follows: 

LEMMA 2.2. If c"-1 is the largest nonzero digit in the NAF of x, for x > 0, then 

[ (r + 1)xj 

Now let the NAF of x be , ocir', and the NAF of y be E'%0 dir'. Suppose both 
of these are CNAF's. Then, since i(x) < n, 

(2.2) (r + 1)x < r 

(2.3) = [ (r + I)x] 0 

(2.4) co x (mod r). 

Let x be the least positive residue of x mod r, i.e., 0 < x < r. Then, since (-cO, c"- 1) 
is admissible, we get two possibilities from Eqs. (2.1): 

(2.5a) co > 0 x > Cn-l, 

(2.5b) Co < ? Cn-1 + r -Jx < r. 

But these implications are the same. Similarly, looking at the CNAF for y, we get 
x < r + I - dn- I' Putting these together, we have 

(2.6) Cni < x < r + 1- dni1 

Now since 
[(lxi [)'( 1)(x - 1)1 

(2.7) d = [(r+ I= [r? 1- ( r+ 1) 
Eq. (2.6) becomes 

(2.8) ([ r< ] 1[ (r?1)(x- 1)1 

and so 

(2.9) (r + 1)(x - 1) > _ > (r + 1)x 
r nrn 

This is clearly impossible, so at most one of the NAF's can be a CNAF. 
Next suppose that neither NAF is a CNAF. This can happen because cn or dn are 

not zero, or when c"= dn= 0, but (-coicn1) and (-dodn-1) are both not 
admissible. Both cases are similar, so we will only do the latter case. 

Since now we are assuming both pairs are nonadmissible, we get Eq. (2.8) turned 
around: 

(2.10) (r )1 )x r + j+1-[r +?1 (r + i)(x - 1) 
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and this gives Eq. (2.9) with the inequalities reversed. After multiplying through by 
rnS 

(2.11) (r + 1)x >? > (r + 1)(x-1), 

and we get 

(2.12) xr (r + I)X < xr + r + 

Since (r + 1)x x (mod r), we get 

(2.13) (r + 1)x = xr + x = x-(r + 1). 

All that is left to complete the proof is to show that the weights of the exceptional 
cases are as given. This is easily done by writing down the NAF's of these numbers 
and seeing that they have the proper weights: 

IA~ rn + I 
1O -,, O -) NAF(r +l ) = (1,0,1 - r,0,...,0, -r), 

NAF rrj~ ) = (1, 0,1I - r, 0,...,1I - 0 

NAF k +l)= (k, I - k, k + 2 - II. ., - k, k + 2 - . 

It is easy to verify that these are the NAF's of the given numbers, and that they have 
the right weights. E 

COROLLARY 2.1. The arithmetic weight of x E Zm is equal to the number of nonzero 
digits in its CNAF. In the exceptional cases mentioned in the last theorem, the weight 
of x is [(n + 1)/2] if x ?m/(r + 1), and n otherwise. 

The exceptional cases are a nuisance, but for a fixed e they only matter for 
[(n + 1)/2] < e. But any nonzero codeword in a perfect e-code must have weight 
> 2 e + 1, so clearly n must be at least 2 e + 1. Thus, if we exclude trivial codes 
(where zero is the only codeword), [(n + 1)/2] >? [(2e + 2)/2] > e, so the excep- 
tional cases do not affect the search for perfect codes. From now on, we will assume 
that n > 2e + 1. 

Let Be(r, n) be the ball of radius e, for a given r and n, i.e., all x such that 
d(O, x) = e. From the above results we obtain the main enumeration theorem: 

THEOREM 3. 

IBe(r )I E 2 k( 1)k (r 2)e-kn 
e - )n 

- e- 

k=1 

Proof. Consider any CNAF of weight e. It has e nonzero digits, broken up by 
zeros into some number of blocks. We will prove the theorem by counting the 
number of ways to break up the nonzero digits, and then count the number of blocks 
of each length. 

A k-composition of n is a set of positive integers X1, X2, ... , Xk such that 

XI + * * + Xk = n. These are also known as ordered partitions. The total number of 
k-compositions of n is (k-1). 

Any weight e CNAF may be thought of as a k-composition of e, for some k. We 
need to figure out how many ways a given k-composition may be arranged among 
the n digits, and how many admissible strings of each block length exist. 
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LEMMA 2.3. The number of ways to position the blocks of a k-composition X,..., Sk 

of e among n digits is (n - 
e) + ( n-ie-i )Xk 

Proof. The number of arrangements with the last position zero is (n - 
e), since there 

are n - e zeros in the word, and a single block may be placed to the left of any of 
these zeros. 

If the last position is nonzero, then the k th block must be at the end, and the 
other k - 1 blocks may be placed to the left of any of the zeros except the first 
(because then the first and last blocks would cyclically coincide, and become one 
block). There are (n-fe-l7) ways to position these blocks. Then the final block may be 
cyclically "wrapped around" by 0,1,..., Xk - 1 digits, giving (Pn-e)Xk possibil- 
ities in total. E1 

LEMMA 2.4. The number of admissible blocks of length X, is 2(r - 1)(r - 2) 

Proof. Call an admissible block (a,,..., ax). a, is nonzero and between -(r - 1) 
and r - 1, a total of 2(r - 1) possibilities. 

Now look at a., for j = 2,. . ., X,. If a.1 is negative, a1 E {-r - a.-, + 
1, . 1 -a -1), by Eqs. (2.1). If a11 is positive, then a E { + 

1, ... -1,1, . . ., r - a.1 - 1). In either case, there are exactly r - 2 possible 
values for a., j = 2, 3,..., IX,. Thus the total number of admissible blocks is 
2(r - 1)(r - 2)xA'1 El 

Proof of Theorem 3. Using Lemmas 2.3 and 2.4, we have 
e 

IBe(r, n) = E ( # of ways to position X) 
k=1 k-comps of e 

. =( X1, .k) 

k 

(2.14) H ( of admissible blocks of length X)) 
1=1 

E n( - e) +n - e - 1) 

.2k(r - 1) k( - 2)Al<1?+X2-1+ *+k-1? 

But XI - 1 + +Xk - 1 = e - k, since X is a k-composition of e. Now the Xk 

term is the only term depending on X. Since (X1,..., Xk-l) is a (k - 1)-composition 
of e - Xk, we can rewrite Eq. (2.14) as 

e 

Be(r, n) = E 2k(r - 1)k ( -2)e 
k=1 

(2.15)ek? 
[(n-e)(e-1+(n-1 z 

E Xk 

(2.15) [( k (k- 1) ( k - 1 
= 

A =1 (k - )-comps 

of e-Xk 

Since no terms depend on the (k - 1)-composition of (e - Xk) we can replace that 
sum by the total number of such compositions, (e->k -1), to get 

e 

IBe(r, n) = E 2k(r -1) k(r - 2)e-k 
k=1 

(2.16) e-k1)\k] 
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It is nonobvious how to simplify this further. The following lemma was determined 
empirically: 

LEMMA 2.5. 

e-k+1/ 
eXk Xk(e 
k - 2 ) kX ( 

Proof. There probably is a good combinatorial reason for this, but it is not 
obvious, so a proof by induction will suffice. For e < k the equation is trivially true, 
and calling the sum S(e, k), it is easy to show that it obeys the recurrence 

S(e, k) = S(e -1, k) + S(e - 1, k - 1), so it must be (e). M 

Using this lemma, Eq. (2.16) becomes 
e 

IBe(rn)= L 2 k(r- l)k(r 2)e-k 

(2.17) k=1 

[(k )k -1 ) (k - 1 )k) 

(2.18) = E 2k(r 1)k(rk2)e k(_1 i)(nk- 1 ) 
k=1 

THEOREM 4. 
e I 

|Se(rl n)| 1 + E E 2 k(r - 1) k(r - 2) k-k - 1)n -1) 
1=1 k=1kk 

I 
k 

Proof. The e-sphere is just a union of balls of radius 4 e, so sum the formula in 

the last theorem to get this one. E[ 

COROLLARY 2.2. 1S2(r, n)I = 2(r - 1)2n(n - 2) + 1. 

COROLLARY 2.3. 1S2(2, n) = 2n2 - 4n + 1. 

This theorem is a very strong necessary condition. For e = 2 there are only 13 

cases where 1S2(r, n)I = A l r ? 1, for A < 241: 
TABLE 1 

Cases satisfying the sphere-packing condition 

r n A Comment 

2 12 241 31 n (Corollary 3.3) 

2 33 2047 31 n (Corollary 3.3) 

2 65 8191 213=1 (mod A) 

2 90 15841 245--1 (mod A) 

2 513 524287 219 1 (mod A) 

2 16385 536870911 229 1 (mod A) 

2 262145 137438953471 237 1 (mod A) 

2 325098 211376118817 n -- 2 (mod4) (Corollary 3.5) 

3 5 121 Perfect 2-code 

3 47 16921 322 317 + 2*31 - 3(0 - (modA) 

8 112 1207361 2112 = 2*837 --1 (mod A) 

9 1008 129798145 9168 1 (mod A) 

27 2354 7485494017 27214 = -1 (mod A) 
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Most of the comments give reasons for the nonexistence of a perfect code for the 
given r, n, and A, using either nonexistence results proved in the next section, or the 
fact that A must be a primitive divisor of rn + 1 (if 2k = 1 (mod A) for k < n, then 
2 _ 1 is a codeword of weight 2, which cannot happen in an e-error-correcting code 
for e > 1). 

The most, difficult case is where r = 3 and n = 47. Computations revealed the 
weight 4 codeword shown in Table 1, so the code generated by A corrects only one 
error and therefore is not perfect, but no theorem is known which explains why this 
happens. Such a theorem might help in proving stronger general nonexistence 
results. 

Most of the r = 2 cases are part of an infinite family: When n = 2' + 1, then 

(2.19) IS2(2, n) =2n2 _4n + 1 = 22m+1 - 1 

and, if 2m + 112' + 1, 

(2.20) IS2(2, n) I= 22m+1 - 112n - 1 = 22`?1 - 1 

and so the sphere-packing condition is satisfied. Whenever 2m + 1 is prime, this will 
happen if (2 l (2m + 1)) = -1, which is true when 2m + 1 + 3 (mod 8). None of 
these give perfect codes, since in these cases 22m? 1 (mod A), and so 1 has two 
different weight 1 CNAF's (mod A). 

For e = 3, a search for all A < 250 found only the case r = 3, n = 7, which is a 
perfect 3-code. 

3. Nonexistence Results. Stronger necessary conditions are needed, and the ones 
for e = 1 are not true in general. The following results are true for all e: 

THEOREM 5. p I A implies p 1 (mod 2n/lcm(e, e- 1, . . ., 2)). 

Proof. Zm/C -ZA, by the definition of a code. But for a perfect code, every 
element can be written as a unique codeword plus an error vector, so Zm/C ={ errors 
of weight < e }. Thus, for a perfect code to exist, there must be exactly A CNAF's of 
weight < e (as stated after Corollary 2.1; since n > 2e + 1 there are no exceptional 
cases, and each error in the e-sphere corresponds to a unique CNAF by Theorem 2). 

This set of CNAF's is acted on by multiplication by the group { ? r' }, j = 

0,1, ..., n - 1. Multiplying by r has the effect of shifting the digits of the CNAF 
cyclically, sendingi(cn_1, . .. , cO) to (Cn2, . . c, ?Cn-1), the sign being changed for 
negacyclic codes. Thus this group action can be thought of as all cyclic shifts and 
negations of the set of CNAF's. 

This group action splits the nonzero CNAF's into orbits. It is a basic combina- 
torial lemma that the size of the orbit containing an object equals the size of the 
group acting on the object divided by the number of group elements which fix that 
object. Since our group of cycle shifts and negations has order 2n, each orbit will 
have size 2 n/f, for some f. 

In particular, each orbit has order a multiple of 2n/f, where f is the number of 
nonzero entries in the CNAF. For instance, for 2-error-correcting codes, the CNAF's 
consist of 0, and all weight one and two admissible representations. Each of the 
weight one orbits has size 2n (only the identity fixes both the position and sign of 
the nonzero entry). All of the weight 2 orbits also have 2n elements, unless n is even, 
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in which case the orbit represented by 

Cn/ + C = (0s . .0, C, Os. SO C) 

has only n elements. Each member of the orbit is fixed by multiplication by rn/2, a 
cyclic shift of n/2 digits. 

Similarly, orbits of size 2n/f may be created if f I n, by spacing a number c evenly 
f times through the n digits of a CNAF. This does not work for a negacyclic code, 
since the sign changes when a number is wrapped around. To get an orbit of size 
2n/f for a negacyclic code, f must be odd, and the sign of c must be alternated. For 
example, the orbit represented by 

c2n/3 _ Cn13 + C = (O. . .so c~o . ... s o, C1o 0* .. * s, c) 

has 2n/3 elements. Each member of the orbit is fixed by multiplication by -rn/3, a 
cyclic shift of n/3 digits and a negation, as well as the identity and multiplication by 
r 2n13 

In general, the possible sizes of orbits in a cyclic code are multiples of 2n/f, for 
any f < e. This is true because each orbit consists of CNAF's of weight < e, and as 
described above, all orbits of weight f have size a multiple of 2n/f. 

So if A =pl... pr, let Qi = A/pi. Then { Qi, 2Qi,..., (pi - 1)Qj} is closed 
under multiplication by ? r, so it is a union of orbits, each of which having size 2n/f 
for some f < e. So for some integral kf's: 

E, kf f I |Qi,. . (Pi - I)Qil 
f=1 

and so 

(2n/lcm(e,.. , 2)) (pi - 1). EC 

If we restrict the theorem to negacyclic codes, then it may be strengthened by only 
taking the least common multiple of the odd numbers < e. 

Let Q(A) be the number of prime factors of A, counted with multiplicity. In other 
words, 

Q 1 < ** ro) = ?al + ***+a?r- 
COROLLARY 3.1. For a fixed e and r, Q(A) > e for at most a finite number of 

perfect codes. 

For e = 2, this gives a weakened version of the results for e = 1: 

COROLLARY 3.2. For e = 2 and a fixed r, any A generating a perfect code is prime, 
with at most finitely many exceptions. 

Proof. By Theorem 5, for a perfect code we have 

A =I Se(r, n) k1 lcm( 2) + I, ki E Z+. 

The left-hand side is a polynomial of degree e, by Theorem 4, so if I > e, and n is 
sufficiently large, there will be no solutions to the equation. If / = e, there are only a 
finite number of { ki } and n which will give solutions, unless for some choice of kid's 
the polynomials are identical. But this can never happen, because the coefficients in 
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the polynomial on the right-hand side are all clearly positive, while from the formula 
for ISe(r, n)l given in Theorem 4 it can easily be shown that the coefficient of ne-' 

is always negative. 
Aside from these finite number of solutions, the sphere-packing bound cannot be 

met unless I < e. El 
For an example, look at e = r = 2, so A = 2n2 - 4n + 1. For r = 2, the only 

possible composite A would be (n + 1)(n + 1), since (2n + 1)(n + 1) and (n + 1)3 
are greater than A for all n > 5. Setting (n + 1)2 = 2n2 - 4n + 1, we get n = 6, so 
A = 49. But 49 does not divide 26 + 1, so no such code exists. Thus, in this case A 
must be prime. 

THEOREM 6. For e = 2, r < 81, A must be prime, except for the case where r = 3, 
A = 121. 

Proof. A computer search for solutions to A = 2(r - 1)2n(n - 2) + 1 = 

(an + 1)(bn + 1), done exactly as the r = 2 case above, revealed only a few cases 
[see Table 1], with only one actual perfect code. Checking higher-degree equations is 
harder, but unnecessary if all n such that 2(r - 1)2n(n - 2) + 1 > (n + 1)3 have 
been checked. Another computer search checked the sphere-packing condition 
for A < 241, which includes n < 13100 for r < 81. For n > 13100 and r < 81, 
2(r - 1)2n(n - 2) + 1 < (n + 1)3, so all possible cases have been covered. El 

Once the composite cases have been dealt with, as above, the primality of A gives 
more conditions on possible perfect codes. For instance: 

COROLLARY 3.3. No perfect e-code exists with e > 2, 3 1 n and A prime. 

Proof. Depending on m, we use one of the factorizations: 

r- 1 = (rn - 1)(r2n + rn + 1), 

r3n + 1 (rn + 1)(r 2 - rn + 1). 

In either case, A I m implies one of the factors on the right-hand side is a multiple of 
A, since A is prime. But the arithmetic weight of those factors is clearly < 3, 
contradicting the fact that weight(AN) > 2e + 1 for all nonzero codewords AN of 
the code. L 

COROLLARY 3.4. No perfect e-code exists with e > 2, 2 I n, A prime and m = r n-1. 

Proof. As above, using r 2n - 1 = (rn -1)(rn + 1). [ 

COROLLARY 3.5. No perfect e-code exists with e > 2, n 2 (mod 4), A prime, 
r = 2 andm = 2n + 1. 

Proof. Use the Aurifeuillian factorization 

24k?2 + 1 = (22k+1 + 2k+1 + 1)(2 2k+1 2k+1 + 1). 1 

These results are helpful for doing computer searches, but do not exclude the 
existence of perfect codes for any e or r. The only such theorem we have is a 
generalization of one by Lenstra: 

THEOREM 7. No perfect cyclic code exists with r a square. 
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Proof. Suppose s 2 r. We know that 2n I *'(A), since { ? ri } is a subgroup of ZA 

of order 2n. Define a = cp(A)/2n. Then: 

sO)la= s2n= rn= 1 (mod A). 

So s is an ath power in Z*. This implies s is the identity element in Z*/{?r1} 
since the order of this group is a. But 1 < s < r, and each of 1, 2,. . ., (r - 1) are the 
representatives of different cosets, so we get a contradiction, and r cannot be a 
square. El 

4. Existence Results and Computer Searches. A search for perfect e-codes for 
e = 2, 3 and 4 was done on a Cray supercomputer. The only perfect codes that were 
found are trivial ones and the following family of perfect codes: 

THEOREM 8. For r = 3, n = 2e + 1, {0,(3n - 1)/2) form a perfect e-code in 

Proof. It suffices to show that the nonzero codeword has weight 2e + 1, and that 
exactly half of the elements of Z3n1 have weight < e. The CNAF's of (32e?1 _ 1)/2 
are (1,... 1) and (-1,..., -1), proving the first point. 

The second is demonstrated by a bijection between CNAF's of weight < e and 
those of weight > e. To construct the bijection, let ui denote any string of zero 
digits, and vi denote any admissible string of nonzero digits. Then any CNAF may 
be decomposed uniquely as either (ul, v1,. .., Uk, Vk), or (vI, u, ..., Vk, Uk), depend- 
ing on whether the CNAF starts with a zero or not. If the last digit and the first digit 
are both either zero or nonzero, then ul or VI is considered to "wrap around". 

The crucial thing to note is that for r = 3 there are only four possible admissible 
strings of a given length: 

(1 , .. , 1, (1,-1,. ..,-1), (21, -I,... -1), (-2, i,... 1). 

Also note that the first digit of a string determines the whole string. The bijection 
consists of interchanging the ui's and via's: Each string of nonzero digits is changed 
to zeros, and the corresponding string of zeros is changed to a nonzero string with 
the same first digit as the old nonzero string had. 

The only exceptions to this decomposition are a CNAF with only zero digits or 
only nonzero digits. But these are just (0,... , 0) and (1,... , 1) (or equivalently 
(-1,..., -1)), the two codewords, so it is natural to have the mapping interchange 
these. 

It is not hard to check that this mapping is in fact a bijection. Also, if a CNAF has 
weight w, then its image has weight 2e + 1 - w, since the arithmetic weight is just 
the number of nonzero digits of a CNAF. Thus CNAF's of weight < e are mapped 
to those of weight > e, and vice versa, so there are the same number of each, and 
the theorem is proven. E 

These codes were known before, in a sense that they are a special case of the 
Mandelbaum-Barrows codes (see [6] for a definition of these codes). They suffer the 
usual problem of these codes: far too few codewords to be useful in practice. 

Aside from the empirical evidence of the searches, a heuristic argument suggests 
that perfect codes are rare for e > 2: 
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Conjecture. For any fixed r and e > 2, the number of perfect e-codes with n < x 
is O(loglogx). 

Heuristic Argument. Assume Q(A) < e, since the number of perfect codes for 
which A has e or more prime factors has been shown to be finite. Then for a fixed r, 
A = f (n), where f is the polynomial given in Theorem 4. Define 

(4.1) T(x) = {n < x, f(n) = U(kllcm, n 2) + I 

where each factor in the product is prime. Then we have 

LEMMA 4.1. T(x) = O(x/log x). 

Proof. This lemma is a special case of Theorem 5.3 of [3], in the case where 
A = f (n) is prime. The proof given there also works for any A; the only necessary 
condition is that the prime factors of f (n) are bounded from below, and in this case 
each prime factor is >> n. 

Let ordA(r) be the order of r mod A, i.e., the smallest exponent 1 for which 
r 1 (mod A). For a given A, if a perfect code exists, ordA(r) = n (for m = r' + 1 

this is 2n, but the argument is otherwise unchanged). We need to estimate the 
probability that this happens. 

For e = 2, for which A is prime, the analysis is easy: Z * is a cyclic group of order 
A - 1 = 2(r - 1)2(n - 2)n. Exactly 2(r - 1)2(n - 2) elements in the group have 
order n, so the probability that r has order n is heuristically 

(4.2) 1 1 

2((r - 41)2(n - 2) n 

In general, the analysis is more difficult. For A composite, Z* is no longer cyclic. 
The group is isomorphic to a direct product of cyclic groups, the largest of which has 
order X(A), where X is Carmichael's universal exponent function (see [4] for details 
about X(n)). 

If 

A= Hjikl +1 
,:-l( 'lcm(e,.., 2) )' 

then 

X (A) > lcm( k 2n i = 2n .lcm(k1,..., k,). 
\klcm( e, . .2) lcm(e,..., 2) 

The fraction of elements which have order n depends on this number and the 
length of the other cycles which make up ZA. For the purposes of this argument we 
will assume that the common factors of the k 's are not very important, so we can 
approximate the length of the cycle by 

2n 
lcm(e,. ..,2) i=1 

and so the probability of an element having order n by 

(4.3) 
lcm(e....,2) 1 

(4.3) Ik, n 
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The inequality follows from the fact that, for n sufficiently large, the leading 
coefficient of 

( k l1cm(e,(; 2) + 1) 

must be >> n e-1 , since A =f (n) is a polynomial in n of degree e, and I <s e - 1. 
From Eq. (4.3) we get 

Exp({n < xordA(r)=n} |) < 1 
n=2e+?1 

U(f(n)) < e 

which, by the definition of T(n), equals 

f, T(n)[' 2' <b f n 
Le 

l n n + 
? =2el ogn n(n ) 

x 1 

<<=+ Enlogn' 

where the last two relations follow from Lemma 4.1. 
This sum is O(log log x). The assumption made is not provable, but it does give 

the right order for e = 1, and it has been used before for empirically supported 
arguments, such as Artin's Conjecture (see [8]). 

This argument does not support the conjecture that infinitely many perfect 
e-codes exist. There are cases which satisfy the sphere-packing condition and are not 
excluded by any of the nonexistence results of Section 3, but for which no perfect 
code exists. When r = 3 and n = 47, A = 169211347 + 1, and none of the nonex- 
istence theorems apply, but some codewords have weight 4. Without more evidence 
it is impossible to conjecture either way, but the argument does indicate that any 
further examples will be extremely large. 
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